Effect of shelf-life simulation on the bond strength of self-etch adhesive systems to dentin

2014 
Self-etch adhesive systems are composed of various monomers, solvents, fillers, and initiators that make their molecular formulations quite complex. The intricate design involved in these systems has raised uncertainties regarding the long-term chemical stability of the components prior to clinical application. Therefore, this study aimed to investigate the effect of shelf-life simulation on the bond strength of self-etch adhesives to dentin. Sound human teeth samples were used and restored using one of three different adhesives: AdheSE™ (Ivoclar Vivadent), Single Bond Universal™ (3 M ESPE), or Clearfil SE Bond™ (Kuraray); Filtek Z350™ (3 M ESPE) was used as composite resin. The study (bond strength testing) was conducted in two distinct parts: (1) without shelf-life simulation of adhesives; and (2) after storing the adhesives in a climate chamber at 40°C and 50% relative humidity (shelf-life simulation). Both groups were prepared for microtensile bond strength (μTBS) testing; however, specimens from the first part of the study were evaluated after 24 h and 6 months of storage in distilled water, whereas specimens from the second part of the study were prepared and tested after 1, 2, and 3 months of shelf-life simulation of adhesives. The hybrid layer and fracture pattern of specimens were analyzed by scanning electron microscopy (SEM). Bond strength data were analyzed using Kruskal-Wallis test and Tukey’s test (α = 5%). When no shelf-life simulation was applied, Single Bond Universal increased bond strength after long-term water storage, whereas AdheSE and Clearfil SE Bond reduced bond strength to dentin. However, the bonding ability of all three adhesive systems investigated was negatively influenced by the shelf-life simulation used.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    7
    Citations
    NaN
    KQI
    []