A genetic variation in microRNA target site of KRT81 gene is associated with survival in early stage non-small cell lung cancer

2015 
Abstract MicroRNAs (miRNAs) have a key role in carcinogenesis through negative regulation of their target genes. Therefore, genetic variations in miRNAs or their target sites may affect miRNA-mRNA interactions, thereby result in altered expression of target genes. This study was conducted to investigate the associations between single-nucleotide polymorphisms (SNP) located in the miRNA target sites (poly-miRTSs) and survival of patients with early-stage non-small-cell lung cancer (NSCLC). Using public SNP database and miRNA target sites prediction program, 354 poly-miRTSs were selected for genotyping. Among these, 154 SNPs applicable to Sequenom's MassARRAY platform were investigated in 357 patients. A replication study was carried out on an independent patient population (n = 479). Renilla luciferase assay and reverse transcription-polymerase chain reaction were conducted to examine functional relevance of potentially functional poly-miRTSs. Of the 154 SNPs analyzed in a discovery set, 14 SNPs were significantly associated with survival outcomes. Among these, KRT81 rs3660G>C was found to be associated with survival outcomes in the validation cohort. In the combined analysis, patients with the rs3660 GC + CC genotype had a significantly better overall survival compared with those with GG genotype [adjusted hazard ratio (aHR) for OS, 0.65; 95% confidence interval (CI) 0.50-0.85; P = 0.001]. An increased expression of the reporter gene for the C allele of rs3660 compared with the G allele was observed by luciferase assay. Consistently, the C allele was associated with higher relative expression level of KRT81 in tumor tissues. The rs3660G>C affects KRT81 expression and thus influences survival in early-stage NSCLC. The analysis of the rs3660G>C polymorphism may be useful to identify patients at high risk of a poor disease outcome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    20
    Citations
    NaN
    KQI
    []