Coarse grained intermolecular interactions on quantum processors.
2021
Variational quantum algorithms (VQAs) are increasingly being applied in simulations of strongly-bound (covalently bonded) systems using full molecular orbital basis representations. The application of quantum computers to the weakly-bound intermolecular and non-covalently bonded regime however has remained largely unexplored. In this work, we develop a coarse-grained representation of the electronic response that is ideally suited for determining the ground state of weakly interacting molecules using a VQA. We require qubit numbers that grow linearly with the number of molecules and derive scaling behaviour for the number of circuits and measurements required, which compare favourably to traditional variational quantum eigensolver methods. We demonstrate our method on IBM superconducting quantum processors and show its capability to resolve the dispersion energy as a function of separation for a pair of non-polar molecules - thereby establishing a means by which quantum computers can model Van der Waals interactions directly from zero-point quantum fluctuations. Within this coarse-grained approximation, we conclude that current-generation quantum hardware is capable of probing energies in this weakly bound but nevertheless chemically ubiquitous and biologically important regime. Finally, we perform simulations on an extended version of the model which includes multipole interactions and anharmonicity - the consequences of the latter are unexamined in large systems using classical computational methods but can be incorporated here with low computational overhead.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
69
References
0
Citations
NaN
KQI