TDP-43 and HSP70 phase separate into anisotropic, intranuclear liquid spherical annuli

2020 
The RNA binding protein TDP-43 naturally phase separates within cell nuclei and forms cytoplasmic aggregates in age-related neurodegenerative diseases. Here we show that acetylation-mediated inhibition of TDP-43 binding to RNA produces co-de-mixing of acetylated and unmodified TDP-43 into symmetrical, intranuclear spherical annuli whose shells and cores have liquid properties. Shells are anisotropic, like liquid crystals. Consistent with our modelling predictions that annulus formation is driven by components with strong self-interactions but weak interaction with TDP-43, the major components of annuli cores are identified to be HSP70 family proteins, whose chaperone activity is required to maintain liquidity of the core. Proteasome inhibition, mimicking reduction in proteasome activity during aging, induces TDP-43-containing annuli in neurons in rodents. Thus, we identify that TDP-43 phase separation is regulated by acetylation, proteolysis, and ATPase-dependent chaperone activity of HSP70.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    9
    Citations
    NaN
    KQI
    []