A method for single molecule localization microscopy of tissues reveals nonrandom distribution of nuclear pores in Drosophila

2021 
Abstract Single Molecule Localisation Microscopy (SMLM) can provide nanoscale resolution in thin samples but has rarely been applied to tissues, because of high background from out of focus emitters. Here we describe a line scanning microscope that provides optical sectioning for SMLM in tissues. Imaging endogenously-tagged nucleoporins and F-actin on this system using DNA- and peptide-PAINT routinely gives 30nm resolution or better at depths greater than 20 µm. This revealed that the nuclear pores are nonrandomly distributed in most Drosophila tissues, in contrast to cultured cells. Lamin Dm0 shows a complementary localisation to the nuclear pores, suggesting that it corrals the pores. Furthermore, ectopic expression of the tissue-specific Lamin C distributes the nuclear pores more randomly, whereas lamin C mutants enhance nuclear pore clustering, particularly in muscle nuclei. Since nucleoporins interact with specific chromatin domains, nuclear pore clustering could regulate chromatin organisation locally and contribute to the disease phenotypes caused by human Lamin A/C laminopathies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    0
    Citations
    NaN
    KQI
    []