Microscale tracking of coral disease reveals timeline of infection and heterogeneity of polyp fate.

2018 
Coral disease is often studied at scales ranging from single colonies to the entire reef. This is particularly true for studies following disease progression through time. To gain a mechanistic understanding of key steps underlying infection dynamics, it is necessary to study disease progression, and host-pathogen interactions, at relevant microbial scales. Here we provide a dynamic view of the interaction between the model coral pathogen Vibrio coralliilyticus and its coral host Pocillopora damicornis at unprecedented spatial and temporal scales. This view is achieved using a novel microfluidics-based system specifically designed to allow microscopic study of coral infection in-vivo under controlled environmental conditions. Analysis of exudates continuously collected at the systems outflow, allows a detailed biochemical and microbial analyses coupled to the microscopic observations of the disease progression. The resulting multilayered dataset provides the most detailed description of a coral infection to-date, revealing distinct pathogenic processes as well as the defensive behavior of the coral host. We provide evidence that infection in this system occurs following ingestion of the pathogen, and may then progress through the gastrovascular system. We further show infection may spread when pathogens colonize lesions in the host tissue. Copious spewing of pathogen-laden mucus from the polyp mouths results in effective expulsion of the pathogen from the gastrovascular system, possibly serving as a first line of defense. A secondary defense mechanism entails the severing of calicoblastic connective tissues resulting in the controlled isolation of diseased polyps, or the survival of individual polyps within infected colonies. Further investigations of coral-pathogen interactions at these scales will help to elucidate the complex interactions underlying coral disease, as we as the versatile adaptive response of the coral ecosystems to fluctuating environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    7
    Citations
    NaN
    KQI
    []