Resonant-scanning dual-color STED microscopy with ultrafast photon counting: A concise guide.
2015
Abstract STED (stimulated emission depletion) is a popular super-resolution fluorescence microscopy technique. In this paper, we present a concise guide to building a resonant-scanning STED microscope with ultrafast photon-counting acquisition. The STED microscope has two channels, using a pulsed laser and a continuous-wave (CW) laser as the depletion laser source, respectively. The CW STED channel preforms time-gated detection to enhance optical resolution in this channel. We use a resonant mirror to attain high scanning speed and ultrafast photon counting acquisition to scan a large field of view, which help reduce photobleaching. We discuss some practical issues in building a STED microscope, including creating a hollow depletion beam profile, manipulating polarization, and monitoring optical aberration. We also demonstrate a STED image enhancement method using stationary wavelet expansion and image analysis methods to register objects and to quantify colocalization in STED microscopy.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
14
Citations
NaN
KQI