Photosynthetic response of two shrubs to rainfall pulses in desert regions of northwestern China

2012 
Pulses of rainfall are particularly pivotal in controlling plant physiological processes in ecosystems controlled by limited water, and the response of desert plants to rainfall is a key to understanding the responses of desert ecosystems to global climatic change. We used a portable photosynthesis system to measure the responses of the diurnal course of photosynthesis, light-response curves, and CO2-response curves of two desert shrubs (Nitraria sphaerocarpa Maxim. and Calligonum mongolicum Turcz) to a rainfall pulse in a desert-oasis ecotone in northwestern China. The photosynthetic parameters, light- and CO2-response curves differed significantly before and after the rainfall pulse. Their maximum net photosynthetic rate (P N) values were 23.27 and 32.92 μmol(CO2) m−2 s−1 for N. sphaerocarpa and C. mongolicum, respectively, with corresponding maximum stomatal conductance (g s) values of 0.47 and 0.39 mol(H2O) m−2 s−1. The P N of N. sphaerocarpa after the rainfall was 1.65 to 1.75 times the value before rainfall, whereas those of C. mongolicum increased to approximately 2 times the prerainfall value, demonstrating the importance of the desert plants response by improving their assimilation rate to precipitation patterns under a future climate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    20
    Citations
    NaN
    KQI
    []