A mathematical model of the photodynamic fullerene-oxygen action on biological tissues

2005 
A kinetic model of the photodynamic fullerene-oxygen action on biological tissues is developed. The efficiency of generation of singlet oxygen is studied in relation to the intensity of exciting radiation and the concentrations of fullerene and oxygen. The spectral efficiencies of singlet oxygen generation upon irradiation of a biological tissue by a lamp and different lasers are studied and compared with each other. The power of luminescence of singlet oxygen is calculated. The spatial distributions of singlet oxygen in allantoic fluid and in murine sarcoma are studied. The oxidation of lipids of external membranes is assumed to be the basic mechanism of cell damage. The characteristic time of this oxidation is calculated. The dose curve of cell survival is estimated. The results of modeling are compared with experimental data in the literature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    11
    Citations
    NaN
    KQI
    []