Secondary electron emission from diamond surfaces

1997 
Diamond exhibits very high, but widely varying, secondary-electron yields. In this study, we identified some of the factors that govern the secondary-electron yield from diamond by performing comparative studies on polycrystalline films with different dopants (boron or nitrogen), doping concentrations, and surface terminations. The total electron yield as a function of incident-electron energy and the energy distribution of the emitted secondary electrons showed that both bulk properties and surface chemistry are important in the secondary-electron-emission process. The dopant type and doping concentration affect the transport of secondary electrons through the sample bulk, as well as the electrical conductivity needed to replenish the emitted electrons. Surface adsorbates affect the electron transmission at the surface-vacuum interface because they change the vacuum barrier height. The presence of hydrogen termination at the diamond surface, the extent of the hydrogen coverage, and the coadsorption of hy...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    90
    Citations
    NaN
    KQI
    []