Enhancing biomass production and yield by maintaining enhanced capacity for CO2 uptake in response to elevated CO2

2014 
Dahal, K., Weraduwage, S. M., Kane, K., Rauf, S. A., Leonardos, E. D., Gadapati, W., Savitch, L., Singh, J., Marillia, E.-F., Taylor, D. C., Micallef, M. C., Knowles, V., Plaxton, W., Barron, J., Sarhan, F., Huner, N., Grodzinski, B. and Micallef, B. J. 2014. Enhancing biomass production and yield by maintaining enhanced capacity for CO2 uptake in response to elevated CO2. Can. J. Plant Sci. 94: 1075-1083. Using four model plants, two members of the Gramineae, rye and wheat, and two Brassicaceae, Brassica napus and Arabidopsis thaliana, two fundamental approaches were exploited to determine how regulating source-sink development would alter photosynthesis, productivity and yield during long-term acclimation to elevated CO2. In one approach we exploited the cold acclimation response of winter wheat, rye and B. napus. In the other approach we modified the dark respiration in A. thaliana to alter availability of respiratory substrates required for anabolic processes, such as fatty acid metabolism, thus reduc...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    8
    Citations
    NaN
    KQI
    []