Nutrient Resorption Strategies of Three Oak Tree Species in Response to Interannual Climate Variability

2021 
Nutrient resorption is critical for plants toward balancing their nutritional requirements and adapting to environmental variabilities, which further impacts litter quality and nutrient cycling. However, the interannual variability of nutrient resorption under climate change remains unclear. We investigated the five-year nutrient resorption efficiencies (NuRE, %) of 14 elements in three deciduous oak tree species (Quercus aliena var. acuteserrata, Q. glandulifera, and Q. variabilis) in a warm-temperate forest of Central China and assessed their relationships with interannual climate and soil factors. Nutrient resorption did not differ between species but varied significantly between different years. For each year, N, P, S, K, C, Mg, and Zn were preferentially resorbed in all of the oak species in contrast to Ca, Na, Mn, Ba, Al, Fe, Cu, which were to some extent discriminated. Among the 14 elements, the NuRE of C, N, P, S, Ca, and Mg was more sensitive to interannual climate variations in the three oak species. The carbon resorption efficiency was significantly increased during the driest year of the study (2014); N resorption efficiency was reduced with temperature; whereas N and P resorption efficiency initially decreased and then increased with precipitation. Moreover, the elements with higher NuREs typically had lower coefficient of variation (CV) in all three oak species. Different oak species exhibited analogous nutrient conservation strategies in response to annual climate variabilities, and interannual climate variations strongly impacted plant nutrient resorption. Deciduous plants may establish a tradeoff mechanism to rebalance somatic nutrients for regrowth at the end of the growing season.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []