Efficient Human Body Tracking by Quick Shift Belief Propagation

2011 
We propose a novel and efficient approach for tracking 2D articulated human body parts. In our approach, the human body is modeled by a graphical model where each part is represented by a node and the relationship between a pair of adjacent parts is indicated by an edge in the graph. Various approaches have been proposed to solve such problems, but efficiency is still a vital problem. We present a new Quick Shift Belief Propagation (QSBP) based approach which benefits from Quick Shift, a simple and efficient mode seeking method, in a part based belief propagation model. The unique aspect of this model is its ability to efficiently discover modes of the underlying marginal probability distribution while preserving the accuracy. This gives QSBP a significant advantage over approaches like Belief Propagation (BP) and Mean Shift Belief Propagation (MSBP). Moreover, we demonstrate the use of QSBP with an action based model; this provides additional advantages of handling self-occlusion and further reducing the search space. We present qualitative and quantitative analysis of the proposed approach with encouraging results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []