Disparity compensation of light fields for improved efficiency in 4D transform-based encoders

2020 
Efficient light field en coders take advantage of the inherent 4D data structures to achieve high compression performance. This is accomplished by exploiting the redundancy of co-located pixels in different sub-aperture images (SAIs) through prediction and/or transform schemes to find a m ore compact representation of the signal. However, in image regions with higher disparity between SAIs, such scheme’s performance tends to decrease, thus reducing the compression efficiency. This paper introduces a reversible pre-processing algorithm for disparity compensation that operates on the SAI domain of light field data. The proposed method contributes to improve the transform efficiency of the encoder, since the disparity-compensated data presents higher correlation between co-located image blocks. The experimental results show significant improvements in the compression performance of 4D light fields, achieving Bjontegaard delta rate gains of about 44% on average for MuLE codec using the 4D discrete cosine transform, when encoding High Density Camera Arrays (HDCA) light field images.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    1
    Citations
    NaN
    KQI
    []