Alpha-synuclein oligomerization increases its effect on promoting NMDA receptor internalization.

2019 
The internalization of NMDA receptors (NMDARs) is promoted by monomeric α-synuclein (α-syn). Because of the pathogenic role of oligomeric α-syn, the effect of aggregated α-syn on this regulation deserves investigation. Several α-syn oligomers were prepared by incubating recombinant human α-syn in phosphate-buffered saline (PBS), plasma of normal controls (NC) and patients with Parkinson’s disease (PD). The α-syn oligomers formed in PBS are not phosphorylated and are different from the α-syn oligomers formed in the plasma of NC and PD that are moderately and highly phosphorylated at serine 129, which is a key phosphorylation site of the α-syn molecule in PD patients. After being added into the culture medium, the α-syn monomers and its oligomers formed in different methods and rapidly entered into MES23.5 dopaminergic cells and induced an increase in the expression of Rab5B, an endocytic protein that has been shown to regulate clathrin-mediated endocytosis of NMDARs. The levels of surface GluN1, a subunit obligatory for the assembly of functional NMDAR, were reduced, but the total GluN1 changes didn’t show a parallel reduction of the surface of GluN1, indicating the internalization of GluN1. Compared with the monomers, the oligomers, especially those formed in PD plasma, were more potent in promoting GluN1 internalization, and were abolished by clathrin inhibitor pitstop2. The above results suggest that α-syn oligomers, especially those formed in PD plasma, increase the effect of α-syn in promoting the internalization of NMDAR GluN1 subunits, possibly through a clathrin-mediated endocytic mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    3
    Citations
    NaN
    KQI
    []