Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young’s modulus via Annealing of Interfacial Structures

2016 
We demonstrate that stronger and more robust nacre-like laminated GO (graphene oxide)/SF (silk fibroin) nanocomposite membranes can be obtained by selectively tailoring the interfacial interactions between “bricks”-GO sheets and “mortar”-silk interlayers via controlled water vapor annealing. This facial annealing process relaxes the secondary structure of silk backbones confined between flexible GO sheets. The increased mobility leads to a significant increase in ultimate strength (by up to 41%), Young’s modulus (up to 75%) and toughness (up to 45%). We suggest that local silk recrystallization is initiated in the proximity to GO surface by the hydrophobic surface regions serving as nucleation sites for β-sheet domains formation and followed by SF assembly into nanofibrils. Strong hydrophobic–hydrophobic interactions between GO layers with SF nanofibrils result in enhanced shear strength of layered packing. This work presented here not only gives a better understanding of SF and GO interfacial interaction...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    54
    Citations
    NaN
    KQI
    []