Involvement of the external mitochondrial NADH dehydrogenase Nde1 in glycerol metabolism by wild-type and engineered Saccharomyces cerevisiae strains

2019 
: Glycerol is an attractive substrate for microbial fermentations due to its higher degree of reduction compared to glucose. The replacement of the native FAD-dependent glycerol catabolic pathway in Saccharomyces cerevisiae by an artificial NADH-delivering dihydroxyacetone (DHA) pathway is supposed to facilitate the capturing of electrons in fermentation products. This requires that the electrons from the cytosolic NADH are not exclusively transferred to oxygen. However, the external NADH dehydrogenases (Nde1/2) and the L-glycerol 3-phosphate shuttle (composed of Gpd1/2 and Gut2), both coupled to the respiratory chain, are known to contribute to cytosolic NAD+ regeneration during growth on non-fermentable carbon sources. In order to evaluate the role of these mechanisms during growth on glycerol, we deleted GPD1/2, GUT2 as well as NDE1/2, separately and in combinations in both the glycerol-utilizing wild-type strain CBS 6412-13A and the corresponding engineered strain CBS DHA in which glycerol is catabolized by the DHA pathway. Particularly, the nde1Δ mutants showed a significant reduction in growth rate and the nde1∆ nde2∆ double deletion mutants did not grow at all in synthetic glycerol medium. The current work also demonstrates a positive impact of deleting NDE1 on the production of the fermentation product 1,2-propanediol in an accordingly engineered S. cerevisiae strain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    7
    Citations
    NaN
    KQI
    []