Fabrication and magnetic properties of FePt nanoparticle assemblies embedded in MgO-matrix systems

2014 
Hydrophilic FePt nanoparticles (NPs) have been embedded into the MgO-matrix systems via a sol–gel process to prevent FePt NPs from aggregating and sintering during the heat-treatment process required for the L10 ordering. The chemically ordered L10-phase FePt can be obtained after annealing at 700 °C for 60 min in atmosphere containing H2. The effect of the pH value of MgO collosol and FePt nanocrystal loading amount on the structure, morphology, and magnetic properties of FePt/MgO nanocomposites has been investigated. The neutral pH value of 7 in MgO sol is beneficial to stabilize FePt NPs and obtain higher chemical ordering parameter S for the face-centered tetragonal -FePt/MgO nanocomposites with larger coercivity. The FePt NPs loading amount also plays a key role in tuning the microstructure and magnetic properties of the nanocomposites. The relatively higher FePt NPs loading with FePt/MgO molar ratio (RFM) of 1:2 leads to relatively perfect hexagonal assembly and pure L10 phase. When the RFM is 1:5 and 1:10, the MgO-matrix in nanocomposites causes the Fe element loss in FePt NPs along with formation of secondary phases such as magnesioferrite or Pt3Fe during the annealing process. Under optimal processing of neutral pH value of 7 and RFM of 1:2, the presence of MgO matrix produces more homogeneous microstructures and better magnetic properties with higher room-temperature coercivity (H C = 4.65 kOe).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    5
    Citations
    NaN
    KQI
    []