Biochemical characterisation of an aldoxime-forming flavoprotein involved in 2-phenylethylglucosinolate biosynthesis in Brassica species

1999 
Abstract L-Homophenylalanine (L-HPhe) is the precursor of 2-phenylethylglucosinolate, a secondary metabolite present in some Brassica and related species. A key step in its biosynthesis is the oxidative decarboxylation of L-HPhe to its aldoxime. The enzyme catalysing this reaction has been shown to be a NADPH- and O 2 -dependent microsomal flavoprotein (L-HPhe FP; EC unclassified). Inhibition studies using Phe homologs and HPhe analogs (α-amino-, α-carboxyl- and ring-substituted), and specific amino acid modifications, were carried out to determine the possible active site structure and catalytic mechanism of L-HPhe FP. Activity with L-HPhe was inhibited by the two higher homologs, but not by L-Phe. Methylation of the substrate α-amino group, or replacement of the α-carboxyl group with a phosphonic acid group, significantly reduced the inhibition. Ring substitutions had varying effects: single methyl substitutions had only minor effects on binding to the active site, whereas di- or tri-methyl, methoxy or halide substitutions significantly reduced inhibition. Simple amines had no significant effect on L-HPhe FP activity. Binding to the active site of the enzyme appears to require a minimum chain length, plus an aromatic ring at one end of the molecule and unmodified α-amino acid moiety at the other. Chemical modification of amino acids on the protein implied there was no requirement for thiol groups (-SH), Ser/Thr hydroxyl groups, or L-Arg in the active site of L-HPhe FP. However, there was evidence for the presence of essential His and Tyr residues, and the involvement of Glu or Asp residues at or near the active site.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    5
    Citations
    NaN
    KQI
    []