Isoflavones Inhibit Nicotine C‐Oxidation Catalyzed by Human CYP2A6

2006 
The inhibitory effects of isoflavones (daidzein, genistein, and glycitein) on human cytochrome P450 (CYP) 2A6 activities were investigated. Daidzein, genistein, and glycitein uncompetitively inhibited nicotine C-oxidation catalyzed by recombinant CYP2A6 expressed in baculovirus-infected insect cells with Ki values of 1.3 ± 0.3 μM, 0.7 ± 0.2 μM, and 5.2 ± 0.8 μM, respectively, but not coumarin 7-hydroxylation. Effects of the intake of soy isoflavones on in vivo nicotine metabolism were investigated with 7 healthy Japanese homozygotes of CYP2A6*1. The cotinine/nicotine ratio of the plasma concentrations 2 hours after chewing 1 piece of nicotine gum under the basal condition (after abstaining from soy foods for 1 week) was 8.8 ± 2.6 (4.4–11.4). The ratio was significantly (P < .05) reduced to 6.7 ± 1.6 (4.0–8.2) after consumption of a soy isoflavone supplement (60 mg of total isoflavones/d) for 5 days. The authors found that isoflavone contained in soy products significantly decreased nicotine metabolism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    31
    Citations
    NaN
    KQI
    []