Estimation of Residual Stress Distribution in Railroad Wheels

2009 
Residual stresses in railroad wheel rims significantly affect the wheel failure life; therefore, it is important to consider residual stresses for wheel failure analysis. In this paper, an advanced computational methodology is developed to estimate residual stresses developed during both the manufacturing process and under service conditions. To estimate the residual stresses in the wheel, three-dimensional decoupled thermal-structural analyses are performed. To simulate the manufacturing process, thermal analysis is performed with convection boundary conditions on the wheel surfaces. The temperature distributions obtained from this thermal analysis are input as loads for structural analysis. The results represent as-manufactured residual stresses. To simulate the thermal brake loading under service conditions, thermal analysis is performed using a heat flux boundary condition on the tread surface. Structural analysis is performed, including the estimated as-manufactured residual stress as initial stress, and using the temperature distributions obtained from thermal analysis of the on-tread braking. The resultant stresses represent the complex combination of residual stresses developed during both the manufacturing process and on-tread braking. The computed results are compared with the experimental data obtained at TTCI and the values reported in the literature.Copyright © 2009 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []