Bi-sparsity pursuit: A paradigm for robust subspace recovery

2018 
Abstract The success of sparse models in computer vision and machine learning is due to the fact that, high dimensional data is distributed in a union of low dimensional subspaces in many real-world applications. The underlying structure may, however, be adversely affected by sparse errors. In this paper, we propose a bi-sparse model as a framework to analyze this problem, and provide a novel algorithm to recover the union of subspaces in the presence of sparse corruptions. We further show the effectiveness of our method by experiments on real-world vision data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []