The application of porous silicon to optical waveguiding technology

1998 
The porosification of silicon can be achieved by the partial electrochemical dissolution (anodization) of the surface of a silicon wafer. The degree of porosity is dependent on the anodization parameters and can generally be controlled within the constraints imposed by substrate dopant type and concentration. Control of porosity leads to control of refractive index, and therein lies the concept of using porous silicon as an optical waveguide. We discuss porous silicon wavegides, for the visible to the infrared, produced by a number of approaches: 1) epitaxial growth onto porous silicon (where the porous layer acts as a substrate for a higher refractive index waveguide epilayer); 2) ion implantation (where either selective areas of high electrical resistivity can be produced, which act as a barrier against porosification, or where the surface of a porosified layer is amorphised to form a waveguide; 3) porous silicon multilayers (where the anodization parameters are periodically varied to produce alternate layers of different porosity and thus refractive index); and 4) oxidation of porous silicon (where a porosified layer is oxidized to form a graded-index, dense or porous, oxide waveguide).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    34
    Citations
    NaN
    KQI
    []