Mechanism of multi-resistant bacterial pathogenesis: MDR genes are not so deadly unless plasmid-mediated toxin, virulence and regulatory genes are activated

2020 
Mdr genes in association with many drug efflux and metal efflux genes are creating pathogenesis due to antibiotic void. However, most dangerous step occurred when R-plasmids and integrons (~2-9kb) were combined with F’-conjugative plasmid (62.5kb) creating large MDR conjugative plasmids that easily donated 6-15 mdr genes to gut microbiota as well as environmental bacteria. Notably, 2-4x1012 human gut microbiota are very valuable in our body for vitamins synthesis and coenzymes perform >30,000 enzymatic reactions of human and animal metabolosome. It seems mdr gene creation is becoming more easy day by day as plasmids have acquired many gene creation genes like recombinases, DNA polymerases, DNA topoisomerases, integrases and transposases. In truth, antibiotics pressure was so instrumental that 25-40% bacteria of Ganga River and Bay of Bengal water were ampicillin and tetracycline resistant and more than 20 class of β-lactamases and drug transporters were generated in MDR plasmids with millions of mutated isomers increasing drugs MIC. When isolated superbugs were injected into male Wister rats, no detectable toxicity was observed up to 3-6 months follow up.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []