Gas-phase metalloprotein complexes interrogated by ion mobility-mass spectrometry

2009 
Abstract Gas-phase biomolecular structure may be explored through a number of analytical techniques. Ion mobility-mass spectrometry (IM-MS) continues to prove itself as a sensitive and reliable bioanalytical tool for gas-phase structure determination due to intense study and development over the past 15 years. A vast amount of research interest, especially in protein and peptide conformational studies has generated a wealth of structural information for biological systems from small peptides to megadalton-sized biomolecules. In this work, linear low field IM-MS has been used to study gas-phase conformations and determine rotationally averaged collision cross-sections of three metalloproteins—cytochrome c , haemoglobin and calmodulin. Measurements have been performed on the MoQToF, a modified QToF 1 instrument (Micromass UK Ltd., Manchester, UK) modified in house. Gas-phase conformations and cross-sections of multimeric cytochrome c ions of the form [ x M +  n H + ] n + for x  = 1–3 (monomer to trimer) have been successfully characterised and measured. We believe these to be the first reported collision cross-sections of higher order multimeric cytochrome c . Haemoglobin is investigated to obtain structural information on the associative mechanism of tetramer formation. Haemoglobin molecules, comprising apo- and holo-monomer chains, dimer and tetramer are transferred to the gas phase under a range of solution conditions. Structural information on the proposed critical intermediate, semi-haemoglobin, is reported. Cross-sections of the calcium binding protein calmodulin have been obtained under a range of calcium-bound conditions. Metalloprotein collision cross-sections from ion mobility measurements are compared with computationally derived values from published NMR and X-ray crystallography structural data. Finally we consider the change in the density of the experimentally measured rotationally averaged collision cross-section for compact geometries of the electrosprayed proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    39
    Citations
    NaN
    KQI
    []