Regulation of the export of RNA from the nucleus

1997 
Abstract Transport of macromolecules across the nuclear envelope is an essential activity in eukaryotic cells. RNA molecules within cells are found complexed with proteins and the bound proteins likely contain signals for RNA export. RNAs microinjected into Xenopus oocyte nuclei are readily exported, and their export can be competed by self RNA but not by RNAs of other classes. This indicates that the rate-limiting step in RNA export is the interaction of RNAs with class-specific proteins, at least when substrate RNAs are present at saturating levels. Export of host mRNAs is inhibited following infection by some animal viruses, while the export of viral RNAs occurs. The HIV-1 RNA-binding protein, Rev, mediates the export of intron-containing viral RNAs that would normally be retained in nuclei. This requires a nuclear export signal (NES) within Rev and an element within the RNA to which Rev binds. In yeast, heat shock causes accumulation of poly(A) + RNA within nuclei but heat-shock mRNAs are transcribed and exported efficiently. This requires elements within heat shock mRNA that probably interact with a cellular protein to facilitate RNA export. In these cases, the proteins that recognize critical sequences in the RNAs probably direct the RNAs to an RNA export pathway not generally used for mRNA export. This would circumvent the general retention of most poly(A) + mRNAs following heat shock in yeast and the need for complete splicing of viral mRNAs that travel through the normal mRNA export pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []