Molecular Chirality and Charge Transfer through Self-Assembled Scaffold Monolayers

2006 
The effect of molecular chirality on electron transmission is explored by photoelectrochemistry. Thiol-terminated chiral scaffold molecules containing a porphyrin chromophore were self-assembled on gold surfaces to form a monolayer. Incorporation of the SAM-coated gold into an electrochemical cell and illumination with visible light generated a cathodic photocurrent. When using circularly polarized light, the photocurrent displayed an asymmetry (different magnitude of photocurrent for right versus left polarization) that changed with the molecular chirality (left- or right-handedness of the scaffold). A symmetry constraint on the electronic coupling between the porphyrin and the organic scaffold is proposed as a possible mechanism for the photocurrent asymmetry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    48
    Citations
    NaN
    KQI
    []