Evolution of quantum criticality in the system CeNi9Ge4

2012 
The heavy fermion system CeNi9Ge4 exhibits a paramagnetic ground state with remarkable features such as: a record value of the electronic specific heat coefficient in systems with a paramagnetic ground state, γ = C/T 5.5 J/molK2 at 80 mK, a temperature-dependent Sommerfeld–Wilson ratio, R = χ/γ, below 1 K and an approximate single ion scaling of the 4f-magnetic specific heat and susceptibility. These features are related to a rather small Kondo energy scale of a few Kelvin in combination with a quasi-quartet crystal field ground state. Tuning the system towards long range magnetic order is accomplished by replacing a few at.% of Ni by Cu or Co. Specific heat, susceptibility and resistivity studies reveal TN ~ 0.2 K for CeNi8CuGe4 and TN ~ 1K for CeNi8CoGe4. To gain insight whether the transition from the paramagnetic NFL state to the magnetically ordered ground state is connected with a heavy fermion quantum critical point we performed specific heat and ac susceptibility studies and utilized the μSR technique and quasi-elastic neutron scattering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    4
    Citations
    NaN
    KQI
    []