A Generalised Construction of Multiple Complete Complementary Codes and Asymptotically Optimal Aperiodic Quasi-Complementary Sequence Sets.
2020
In recent years, complete complementary codes (CCCs) and quasi-complementary sequence sets (QCSSs) have found many important applications in multi-carrier code-division multiple-access (MC-CDMA) systems for their good correlation properties. In this paper, we propose a generic construction of multiple sets of CCCs over $\mathbb {Z}_{N}$ , consisting of sequences of length $N$ , where $N\geq 3$ is an arbitrary odd integer. Interestingly, the maximum inter-set aperiodic cross-correlation magnitude of the proposed CCCs is upper bounded by $N$ . It turns out that the combination of the generated CCCs results in a new set of sequences to obtain asymptotically optimal and near-optimal aperiodic QCSSs. The proposed construction includes a recent optimal construction of QCSSs with prime length as a special case and leads to asymptotically optimal QCSSs with new flexible parameters.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
23
References
4
Citations
NaN
KQI