Electrical contact resistance of a thin oxide layer with a low mechanical load

2013 
The electrical contact resistance of a vertical binary contact between stainless steel balls with a low mechanical load was investigated. Using a statistical approach, we measured the voltage at which the dielectric breakdown occurs within a thin surface oxide layer and the distribution of the contact resistance. Electrical load-bearing conduction through a thin insulating layer was found to occur through two possible sequential processes. In both cases, once a conduction path is formed, the melting of bridges as in conventional contact theory is involved. This suggests that conduction through an oxide layer with a low mechanical load depends mainly on breakdown-induced bridges. Furthermore, the distribution of such path’s resistance shows the log-normal distribution with a long tail toward high resistance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []