Dietary Taurine Attenuates Hydrogen Peroxide-Impaired Growth Performance and Meat Quality of Broilers via Modulating Redox Status and Cell Death Signaling.

2021 
Oxidative stress seriously affects poultry production. Nutritional manipulations have been effectively used to alleviate the negative effects caused by oxidative stress. This study investigated the attenuating effects and potential mechanisms of dietary taurine on growth performance and meat quality of broiler chickens challenged with hydrogen peroxide (H2O2). Briefly, a total of 192 male Arbor Acres broilers (28-day-old) were randomly categorized into 3 groups: non-injection of birds on basal diets (control), 10.0% H2O2-injection of birds on basal diets (H2O2), and 10.0% H2O2-injection of birds on basal diets supplemented with 5 g/kg taurine (H2O2+taurine). Each group consisted of 8 cages of 8 birds each. Results indicated that H2O2 administration significantly reduced growth performance and impaired breast meat quality by decreasing ultimate pH and increasing shear force value (P < 0.05). Dietary taurine improved the body weight gain and feed intake, and decreased feed/gain ratio of H2O2-challenged broilers. Meanwhile, oxidative stress induced by intraperitoneal injection of H2O2 suppressed the nuclear factor-κB (NF-κB) signaling and initiated autophagy and apoptosis. Compared with the H2O2 group, taurine supplementation restored the redox status in breast muscle by decreasing levels of reactive oxygen species and contents of oxidative products and increasing antioxidant capacity (P < 0.05). Moreover, upregulated mRNA expression of NF-κB signaling-related genes including p50 and Bcl-2, as well as enhanced protein expression of NF-κB were observed in the H2O2+taurine group (P < 0.05). Additionally, dietary taurine decreased expression of caspase family, beclin-1 and LC3-II (P < 0.05), thereby rescuing autophagy and apoptosis in breast muscle induced by H2O2. Collectively, dietary supplementation with taurine effectively improves growth performance and breast meat quality of broilers challenged with H2O2, possibly by protecting against oxidative injury and modulating cell death signaling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []