Hyperspectral signatures of an eastern North American temperate forest

2006 
We describe a new approach to unsupervised classification that automatically finds dense parts of the hyperspectral data cloud. These dense regions are identified as the cluster centers required for unsupervised classification. The approach is tested using AVIRIS hyperspectral imagery from central Texas that has spectrally well separated land covers. The algorithm is then applied to the more stressing case of separating coniferous and deciduous forests in eastern Virginia. We find that the major spectral difference is brighter reflectance in the NIR plateau for deciduous forests compared to adjacent coniferous stands. This difference is sufficient to distinguish the forest types, and is confirmed by comparison to ground truth information.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []