Bioremediation of cadmium-trichlorfon co-contaminated soil by Indian mustard (Brassica juncea) associated with the trichlorfon-degrading microbe Aspergillus sydowii: Related physiological responses and soil enzyme activities

2019 
Abstract Soil co-contaminated with heavy metals and organics is often difficult to remediate. In this study, pot experiments were conducted to investigate the concurrent removal of cadmium (Cd, two levels: CdL [10 mg kg−1] and CdH [50 mg kg−1]) and trichlorfon (TCF, 100 mg kg−1) from co-contaminated soil by comparing the following remediation methods: natural remediation (NR), soil inoculated with Aspergillus sydowii (AS), soil planted with Brassica juncea (BJ), and soil planted with B. juncea and inoculated with A. sydowii (BJ–AS). The physiological responses of B. juncea and soil enzyme activities after remediation were also studied. B. juncea grew well in co-contaminated soil at both Cd levels. The biomass and chlorophyll content of B. juncea in CdH soil were lower than those in CdL soil, whereas the malondialdehyde content and activities of catalase, peroxidase and superoxide dismutase of B. juncea in CdH soil were higher than those in CdL soil. Cd accumulation in B. juncea was high in CdH soil, whereas high Cd removal efficiency was observed in CdL soil. TCF could be thoroughly degraded within 35 days in NR at both Cd-level soils. AS, BJ and BJ–AS promoted TCF degradation and enhanced the activities of catalase, urease, sucrase and alkaline phosphatase in soil compared with the NR. BJ–AS showed the highest phytoextraction ratio (3.32% in CdL and 1.34% in CdH soil) and TCF degradation rate (half-life of 2.18 and 2.37 days in CdL and CdH soil, respectively). These results demonstrate that BJ-AS could effectively remove Cd and TCF from soil and is thus a feasible technology for the bioremediation of these co-contaminated soil.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    8
    Citations
    NaN
    KQI
    []