Heat Driven Flows in Microsized Nematic Volumes: Computational Studies and Analysis

2021 
The nematic fluid pumping mechanism responsible for the heat driven flow in microfluidic nematic channels and capillaries is described in a number of applications. This heat driven flow can be generated either by a laser beam focused inside the nematic microvolume and at the nematic channel boundary, or by inhomogeneous heating of the nematic channel or capillary boundaries. As an example, the scenario of the vortex flow excitation in microsized nematic volume, under the influence of a temperature gradient caused by the heat flux through the bounding surface of the channel, is described. In order to clarify the role of heat flux in the formation of the vortex flow in microsized nematic volume, a number of hydrodynamic regimes based on a nonlinear extension of the Ericksen–Leslie theory, supplemented by thermomechanical correction of the shear stress and Rayleigh dissipation function, as well as taking into account the entropy balance equation, are analyzed. It is shown that the features of the vortex flow are affected not only by the power of the laser radiation, but also by the duration of the energy injection into the microsized nematic channel.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []