Chemical synthesis and assembly of quasi-two-dimensional metal chalcogenides graphene analogues

2012 
Inorganic graphene analogues are regarded as a typical quasi-two-dimensional nanostructure system. Graphene analogues entail more structural parameters that could be controlled compared with the pure-carbon graphene, which leads to the well controlled energy-band type and gap width, showing the promising signs in constructing electronic device in the field of energy conversion and energy storage. In this regard, metal chalcogenides (MCs) have drawn extensive attention as an important graphene analogue material system due to its unique quasi-two dimensional crystallographic structure. Herein, we reviewed the synthesis and assembly methodologies for graphene analogues of MCs, as well as their functional applications of their assembled nanostructures. We put forward the strategies that utilizing chemical methods to weaken interlayer force and embodying the highly anisotropic characteristics in the internal structural lattices to successfully realize the fabrication of graphene analogues. Finally, we also summarized the assembly strategy of graphene analogues and their promising applications in the area of energy storage and intelligent responsiveness nanodevices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []