PARAMETER ANALYSIS OF 2D COCHLEAR MODEL AND QUANTITATIVE RESEARCH ON THE TRAVELING WAVE PROPAGATION

2017 
The traveling wave is the most important phenomenon in cochlear macromechanics. The behaviors of the traveling wave that greatly alter the auditory discrimination, are tightly related with the mechanical properties of the basilar membrane (BM) and its surrounding lymph. As an addition to the blanks of related researches, this paper focuses on some of the key parameters that affect the cochlear response most: the BM stiffness, damping parameters and the fluid viscosity. The influence of these parameters on the traveling wave is discussed, based on our former developed 2D finite element hydrodynamic cochlear model. Moreover, the traveling wave velocity and its transmitting time are calculated based on the simulating results. Although generally a rapid fall of the velocity from the cochlear base to the characteristic frequency (CF) location is confirmed, our quantitative analysis also indicates the traveling wave velocity may be both location and frequency dependent.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []