An improved physical split-window algorithm for precipitable water vapor retrieval exploiting the water vapor channel observations

2017 
Abstract This paper presents a new atmospheric precipitable water vapor (PWV) retrieval method based on three thermal infrared band observations from geostationary satellites. The proposed method is similar to the traditional physical split-window (PSW) retrieval technique, but a water vapor channel observation near 6.7 μm was included. Sensitivity analyses and simulation retrievals were carried out respectively according to the instrument characteristics of the Stretched Visible and Infrared Spin Scan Radiometer onboard FengYun-2G (SVISSR/FY-2G) and the Moderate Resolution Imaging Spectroradiometer aboard Terra (MODIS/Terra). The results indicate that the proposed 3-band algorithm can significantly reduce PWV retrieval errors caused by surface emissivity uncertainty and observation errors, especially in dry atmospheric conditions (i.e., PWV  2 ), root mean square error (RMSE), and bias between the SVISSR retrieved PWV and the radiosonde PWV are 0.87, 0.43 cm and 0.14 cm, respectively. The R 2 , RMSE and bias of the MODIS retrieved PWV are 0.89, 0.10 cm and − 0.042 cm, respectively, which are slightly better than the MODIS L2 thermal infrared and near-infrared PWV products.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    13
    Citations
    NaN
    KQI
    []