High position resolution gamma-ray imagers consisting of a monolithic MPPC array with submillimeter pixelized scintillator crystals

2012 
We report on the development of two versatile, high spatial resolution gamma-ray imagers for medical imaging. One is a compact gamma-ray camera, the other is a tweezers type coincidence imaging system. These applications consisting of a large-area monolithic Multi-Pixel Photon Counter (MPPC) and submilIimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. Each channel has a photosensitive area of 3 × 3 mm 2 and 3600 Geiger mode avalanche photodiodes (APD). For a typical operational gain of 7.5 × 10 5 at + 20 degrees, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to ≤ 400 kcps per channel. We particularly selected Ce-doped (Lu,Y) 2 (SiO 4 )O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd 3 Al 2 Ga 3 O 12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintilla tors were fabricated to 22 × 22 or 15 × 15 matrices of 0.5 × 0.5 mm 2 pixels. These scintillator matrices were coupled to the MPPC array with an acrylic light guide with 1 mm thick, and signals were read out using the charge division resistor network, which compiles signals into four position-encoded analog outputs. The spatial resolution of 1.2 mm was achieved with the compact gamma-ray camera using collimated 57 Co source, and a radiography image of a bearing was successfully obtained. On the other hand, the spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22 Na source. Furthermore the experimental measurements for a PET scanner was performed, and the spatial resolution of 0.91 mm was achieved. These results suggest that the gamma-ray imagers has excellent potential for their uses as a high spatial medical imaging, and also be promising for positron emission tomography (PET).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    4
    Citations
    NaN
    KQI
    []