Charge carrier transport in thin conjugated polymer films: influence of morphology and polymer/substrate interactions

2020 
The performance of conjugated polymer (CP)-based electronic devices relies on optimal charge carrier mobilities, which are determined by monomeric architecture, degree of polymerization, chain conformation, and the nano- and mesoscale morphologies. With regard to the latter, we discuss two effects that have received limited attention in the literature, yet important for device performance optimization: (1) the role of morphological disorder and of CP/substrate interactions on the in-plane and out-of-plane carrier transport in CPs; (2) the impact of morphological disorder on charge transfer at the CP/substrate interface. The emergence of film thickness-dependent carrier mobilities, varying over two orders of magnitude within a length scale of 200 nm, and band-bending phenomena, extending tens of nanometers within the CP, are associated with these effects. These findings suggest areas for further research in order to enable widespread applications of next-generation CP-based devices. Graphical abstract
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    126
    References
    3
    Citations
    NaN
    KQI
    []