Grain-size-yield stress relationship: Analysis and computation

1999 
The seminal contributions of Julia Weertman to the understanding of the mechanical properties of nanocrystalline materials will be briefly outlined. A constitutive equation predicting the effect of grain size on the yield stress of metals, based on the model proposed by M.A. Meyers and E. Ashworth, is discussed and extended to the nanocrystalline regime. At large grain sizes, it has the Hall-Petch form, and in the nanocrystalline domain the slope gradually decreases until it asymptotically approaches the flow stress of the grain boundaries. The material is envisaged as a composite, comprised of the grain interior, with flow stress {sigma}{sub fB}, and grain boundary work-hardened layer, with flow stress {sigma}{sub fGB}. Three principal factors contribute to the grain-boundary hardening: (1) the grain boundaries act as barriers to plastic flow; (2) the grain boundaries act as dislocation sources; and (3) elastic anisotropy causes additional stresses in grain-boundary surroundings. The predictions of this model are compared with experimental measurements over the mono, micro, and nanocrystalline domains. Computational predictions are made of plastic flow as a function of grain size incorporating elastic and plastic anisotropy as well as differences of dislocation accumulation rate in grain boundary regions and grain interiors. This is the firstmore » plasticity calculation that accounts for grain size effects in a physically-based manner. 58 refs., 7 figs., 1 tab.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []