Denoising in spatial particle tomography on multi-layer holography reconstruction by deep learning

2019 
Spatial particle distribution can be recorded by holography technology and can be constructed from multi-layer hologram. Due to the influence of holographic recording and reconstruction process, each tomography of multi-layer reconstruction from holography also contains noise in addition to containing spatial particle distribution information. How to denoise each tomography is a key problem. The existing methods either have a long operation time or the noise reduction effect is not obvious. In order to solve the above problems, we proposed a denoising method based on deep learning in this paper. A deep neural network is built to train and test with simulated spatial particle tomography on multi-layer holography reconstruction. According to the simulation results, the method proposed in this paper is effective in denoising the reconstruction results of spatial particles. The proposed method has the advantages of rapidity and high efficiency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []