Exploring PRISMA Scene for Fire Detection: Case Study of 2019 Bushfires in Ben Halls Gap National Park, NSW, Australia

2021 
Precursore IperSpettrale della Missione Applicativa (Hyperspectral Precursor of the Application Mission, PRISMA) is a new hyperspectral mission by the ASI (Agenzia Spaziale Italiana, Italian Space Agency) mission launched in 2019 to measure the unique spectral features of diverse materials including vegetation and forest disturbances. In this study, we explored the potential use of this new sensor PRISMA for active wildfire characterization. We used the PRISMA hypercube acquired during the Australian bushfires of 2019 in New South Wales to test three detection techniques that take advantage of the unique spectral features of biomass burning in the spectral range measured by PRISMA. The three methods—the CO2-CIBR (continuum interpolated band ratio), HFDI (hyperspectral fire detection index) and AKBD (advanced K band difference)—were adapted to the PRISMA sensor’s characteristics and evaluated in terms of performance. Classification techniques based on machine learning algorithms (support vector machine, SVM) were used in combination with the visual interpretation of a panchromatic sharpened PRISMA image for validation. Preliminary analysis showed a good overall performance of the instrument in terms of radiance. We observed that the presence of the striping effect in the data can influence the performance of the indices. Both the CIBR and HFDI adapted for PRISMA were able to produce a detection rate spanning between 0.13561 and 0.81598 for CO2-CIBR and that between 0.36171 and 0.88431 depending on the chosen band combination. The potassium emission index turned out to be inadequate for locating flaming in our data, possibly due to multiple factors such as striping noise and the spectral resolution (12 nm) of the PRISMA band centered at the potassium emission.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    2
    Citations
    NaN
    KQI
    []