Design of lead-free candidate alloys for low-temperature soldering applications based on the hypoeutectic Sn–6.5Zn alloy

2014 
Abstract The coupling effect of both minor alloying addition and reducing the amount of Zn phase have been proposed as an important strategy to improve the integrity and reliability of eutectic Sn–9Zn solder joints. In this work, the changes in microstructures, thermal behaviors and mechanical properties associated with the alloying of Ni and Sb to eutectic Sn–Zn after reducing the amount of Zn phase were explored. Thermal analysis confirmed that Ni and Sb additions being effective in reducing the amount of undercooling, while the melting temperature and pasty range remained at the hypoeutectic Sn–6.5Zn level. The resulting ultimate (UTS), yield tensile strength (YS) and elongation (El) of Sn–6.5Zn–0.5Ni and Sn–6.5Zn–0.5Sb alloys were experimentally determined and compared with the corresponding results of plain Sn–6.5Zn solder alloy. It was found that the Sn–6.5Zn–0.5Ni and Sn–6.5Zn–0.5Sb alloys examined comply with the compromise between high mechanical strength and ductility. Microstructural analysis revealed that the origin of change in mechanical properties was attributed to the enhanced solid solution effect of Sb and the flower shaped (Ni, Zn) 3 Sn 4 intermetallics (IMC) phase produced by Ni addition. The Sn–6.5Zn–0.5Sb alloy has the highest UTS and appropriate ductility of all alloys examined. This finding indicates the capability of newly developed ternary solder alloys to serve a much wider array of value-added applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    46
    Citations
    NaN
    KQI
    []