Study on Initial Current-Limiting Performance of the Resistive-Type SFCL Element According to the Electrical Coupling Condition With Cores and Coils

2016 
This paper was conducted to widen the use of the YBCO-coated conductor's superconducting current-limiting element under the electrical coupling condition with cores and coils. Using cores and coils, diverse winding directions and turn ratios were available, and the initial operating performance of the superconducting current-limiting element could be improved. In this paper, three kinds of YBCO-coated conductors with stabilization layers that had different specific resistivity values were used to fabricate superconducting current-limiting elements, and an electrical coupling condition, which did not produce resistance in the normal operating condition when it was combined with the superconducting current-limiting elements, was presented. After the superconducting current-limiting elements were combined with the electrical coupling condition, an overcurrent was applied, and the initial operation performance was examined. The initial operation performance indicators were the current-limiting rate, response time, and steep slope of the initial current-limiting curve. The current-limiting rate was excellent when the specific resistivity of the superconducting current-limiting element was high and when it was combined with the electrical coupling condition to increase the equivalent impedance. However, when the specific resistivity of the YBCO-coated conductors to the superconducting current-limiting elements was too low, the electrical coupling condition did not work properly. The response time and steep slope of the current-limiting curve characteristics showed that they did not depend on the specific resistivity of the superconducting current-limiting elements when the equivalent impedance of the electrical coupling condition was higher than the resistance of the superconducting current-limiting elements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []