Performance Analysis of FD-NOMA-based Decentralized V2X Systems

2019 
In order to meet the requirements of massively connected devices, different quality of services (QoS), various transmit rates, and ultra-reliable and low latency communications (URLLC) in vehicle-to-everything (V2X) communications, we introduce a full duplex non-orthogonal multiple access (FD-NOMA)-based decentralized V2X system model. We, then, classify the V2X communications into two scenarios and give their exact capacity expressions. To solve the computation complicated problems of the involved exponential integral functions, we give the approximate closed-form expressions with arbitrary small errors. Numerical results indicate the validness of our derivations. Our analysis has that the accuracy of our approximate expressions is controlled by the division of $\frac {\pi }{2}$ in the urban and crowded scenarios, and the truncation point ${T}$ in the suburban and remote scenarios. Numerical results manifest that: 1) increasing the number of V2X device, NOMA power, and Rician factor value yields a better capacity performance; 2) effect of FD-NOMA is determined by the FD self-interference and the channel noise; and 3) FD-NOMA has a better latency performance compared with other schemes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    71
    Citations
    NaN
    KQI
    []