Modeling of LC-shunted intrinsic Josephson junctions in high-Tc superconductors

2017 
Resonance phenomena in a model of intrinsic Josephson junctions shunted by LC-elements (L-inductance, C-capacitance) are studied. The phase dynamics and IV-characteristics are investigated in detail when the Josephson frequency approaches the frequency of the resonance circuit. A realization of parametric resonance through the excitation of a longitudinal plasma wave, within the bias current interval corresponding to the resonance circuit branch, is demonstrated. It is found that the temporal dependence of the total voltage of the stack, and the voltage measured across the shunt capacitor, reflect the charging of superconducting layers, a phenomenon which might be useful as a means of detecting such charging experimentally. Thus, based on the voltage dynamics, a novel method for the determination of charging in the superconducting layers of coupled Josephson junctions is proposed. A demonstration and discussion of the influence of external electromagnetic radiation on the IV-characteristics and charge-time dependence is given. Over certain parameter ranges the radiation causes an interesting new type of temporal splitting in the charge-time oscillations within the superconducting layers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    16
    Citations
    NaN
    KQI
    []