Influence of Thread Pitch, Helix Angle, and Compactness on Micromotion of Immediately Loaded Implants in Three Types of Bone Quality: A Three-Dimensional Finite Element Analysis

2014 
This study investigated the influence of thread pitch, helix angle, and compactness on micromotion in immediately loaded implants in bone of varying density (D2, D3, and D4). Five models of the three-dimensional finite element (0.8 mm pitch, 1.6 mm pitch, 2.4 mm pitch, double-threaded, and triple-threaded implants) in three types of bone were created using Pro/E, Hypermesh, and ABAQUS software. The study had three groups: Group 1, different pitches (Pitch Group); Group 2, same compactness but different helix angles (Angle Group); and Group 3, same helix angle but different compactness (Compact Group). Implant micromotion was assessed as the comprehensive relative displacement. We found that vertical relative displacement was affected by thread pitch, helix angle, and compactness. Under vertical loading, displacement was positively correlated with thread pitch and helix angle but negatively with compactness. Under horizontal loading in D2, the influence of pitch, helix angle, and compactness on implant stability was limited; however, in D3 and D4, the influence of pitch, helix angle, and compactness on implant stability is increased. The additional evidence was provided that trabecular bone density has less effect on implant micromotion than cortical bone thickness. Bone type amplifies the influence of thread pattern on displacement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    10
    Citations
    NaN
    KQI
    []