Mice deficient in endothelin-converting enzyme-2 exhibit abnormal responses to morphine and altered peptide levels in the spinal cord.

2011 
J. Neurochem. (2011) 119, 1074–1085. Abstract An increasing body of evidence suggests that endothelin-converting enzyme-2 (ECE-2) is a non-classical neuropeptide processing enzyme. Similar to other neuropeptide processing enzymes, ECE-2 exhibits restricted neuroendocrine distribution, intracellular localization, and an acidic pH optimum. However, unlike classical neuropeptide processing enzymes, ECE-2 exhibits a non-classical cleavage site preference for aliphatic and aromatic residues. We previously reported that ECE-2 cleaves a number of neuropeptides at non-classical sites in vitro; however its role in peptide processing in vivo is poorly understood. Given the recognized roles of neuropeptides in pain and opiate responses, we hypothesized that ECE-2 knockout (KO) mice might show altered pain and morphine responses compared with wild-type mice. We find that ECE-2 KO mice show decreased response to a single injection of morphine in hot-plate and tail-flick tests. ECE-2 KO mice also show more rapid development of tolerance with prolonged morphine treatment and fewer signs of naloxone-precipitated withdrawal. Peptidomic analyses revealed changes in the levels of a number of spinal cord peptides in ECE-2 KO as compared to wild-type mice. Taken together, our findings suggest a role for ECE-2 in the non-classical processing of spinal cord peptides and morphine responses; however, the precise mechanisms through which ECE-2 influences morphine tolerance and withdrawal remain unclear.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    11
    Citations
    NaN
    KQI
    []