On the Tradeoff between Computation-Time and Learning-Accuracy in GAN-based Super-Resolution Deep Learning

2021 
The trade-off between accuracy and computation should be considered when applying generative adversarial network (GAN)-based image generation to real-world applications. This paper presents a simple yet efficient method based on Progressive Growing of GANs (PGGAN) to exploit the trade-off for image generation. The scheme is evaluated using the LSUN dataset.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []