Density-matrix simulation of small surface codes under current and projected experimental noise

2017 
We present a full density-matrix simulation of the quantum memory and computing performance of the distance-3 logical qubit Surface-17, following a recently proposed quantum circuit and using experimental error parameters for transmon qubits in a planar circuit QED architecture. We use this simulation to optimize components of the QEC scheme (e.g., trading off stabilizer measurement infidelity for reduced cycle time) and to investigate the benefits of feedback harnessing the fundamental asymmetry of relaxation-dominated error in the constituent transmons. A lower-order approximate calculation extends these predictions to the distance-$5$ Surface-49. These results clearly indicate error rates below the fault-tolerance threshold of surface code, and the potential for Surface-17 to perform beyond the break-even point of quantum memory. At state-of-the-art qubit relaxation times and readout speeds, Surface-49 could surpass the break-even point of computation.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []